An Analysis On Kri Improvement Project In Indonesian Naval

By I Made Jiwa

AN ANALYSIS ON KRI IMPROVEMENT PROJECT IN INDONESIAN NAVAL MAIN BASE NO. V SURABAYA FASHARKAN (NAVY'S BATTLESHIPS MAINTENANCE AND REPAIRING FACILITIES USING FUZZY FMEA METHOD

Eko Krisdiono¹, I Nengah Putra A², I Made Jiwa Astika¹, Bambang Suharjo¹

¹Indonesian Naval Technology College, STTAL-Bumimoro-Morokrembangan, Surabaya 60187, Indonesia ²Indonesia Defense University ²Nengah9627@yahoo.com

ABSTRACT

The FMEA method is a tool used to identify the consequences or consequences of a system or process failure and reduce or eliminate failure. In determining risk factors and system improvement priorities, traditional FMEA still has weaknesses, where FMEA traditionally places severity factors, occurrence, and detection at the same level of importance, even though in reality different levels of importance and the importance of FMEA assessment teams are ignored. In this study, the fuzzy method is integrated into FMEA where the severity factor, occurrence, and detection are assessed in linguistic form. In this fuzzy method, the weight of the interests of the FMEA assessment team is taken into account to do ranking and repair priorities. The application of Fuzzy methods to FMEA to determine significant risk factors and prioritizing improvements from various alternatives chosen for the process of repairing KRI in Surabaya Lantamal V, so that it is expected that the application of this method can improve the operational performance of Fasharkan to eliminate or reduce the risks that occur in the repair process ships in the eastern region of the fleet.

42

Keywords: Risk Management, Failure Modes and Effect Analysis (FMEA), Fuzzy Method.

INTRODUCTION.

Indonesian battleship (KRI) as a component of the Integrated Fleet Weapon system (SSAT) is the leading defense force to safeguard the maritime territory of the Republic of Indonesia (NKRI) with all its interests, therefore it requires operational readiness of the KRI elements. One of the inhibiting factors in KRI readiness in carrying out operations is the occurrence of a failure in the process of repairing the KRI. Failure on the system will certainly require high costs due to production losses and delays, unplanned interventions in the system and safety hazards (Sachdeva et al, 2009). To prevent these conditions from happening, it is necessary to take the

right steps to correct or eliminate failures so that the system's performance does not decrease.

The current conditions for several accidents on the KRI have caused significant material losses, like KRI Klewang 625 Missile Fast Ship (KCR) which was launched on 31 August 2012 from PT. Lundin Industry Invest Banyuwangi caught fire on Friday 28 September 2012, also KRI Teluk Peleng 535 which sank on Monday 19 November 2013 due to leakage of the vessel's age of 35 years experienced material fatigue and the KRI of Bintuni Bay 520 on October 27, 2014 experiencing a fire caused a problematic electricity on the ship, with these conditions needing

to identify the risks to the ship to reduce or avoid risks that occur in KRI making or repairing.

Determining the right steps to prevent failure is not easy. The step combines technical requirements and management strategies (Sachdeva et al, 2009). The failure events in the KRI improvement process are well studied to determine the solutions to be taken based on the form of failure, effects, and costs for all systems. Data information about failure will help personnel determine appropriate corrective actions and determine different priorities on each risk factor which is experience failure.

Based on the Naval Chief of Staff Regulation number Perkasal / 41 / V / 2010 on 18 May 2010, Fasharkan Surabaya is in charge of assisting the Commander of the Surabaya Navy V Main Base in providing maintenance and repair facilities for ships that will carry out repairs to machinery, equipment navigation, shipping, weapons, electronics, magnetic security, docking and fostering the potential of maritime services supporting the main tasks of the V Naval Base of Surabaya. In carrying out its duties Fasharkan Surabaya has the function of providing maintenance facilities and improvement for KRI which will carry out repairs, maintain the level of readiness of facilities and infrastructure to be spread out in the Fasharkan environment so that will be able to accept the task of maintaining and repairing the Navy, planning maintenance and repair activities at the depo and middle level as well as emergency repairs to the Eastern Indonesian Fleet Command along with workshop equipment based on the Disharmap Koarmatim plan and program and organizing support for maintenance and repair of unified vessels non-Indonesian Navy as well as commercial vessels in their area by utilizing technology that will be used in the production of ships from the start of design to the operation of the ship.

Risk management is needed to identify strengths and weaknesses for improvements and actions that can be taken to improve performance (Shinyu Mu et al., 2014) Risk analysis is becoming increasingly important now, many cases where failure to manage risk properly can result in considerable losses, both for organizations, even individuals. Several incidents such as losses suffered by companies due to misuse of employees management, failure to anticipate economic and other crises, there are detrimental to the individual because the individual is negligent in obeying existing regulations. The potential loss from the risk will be even greater if people in the organization (the organization as a whole) do not have prudent behavior. This Incident can be avoided if we understand and manage the risk properly.

Risk response is very important in risk management to produce strategies, use information and knowledge about the problems that have occurred (Zhi-Ping Fan et al, 2015) Risks will arise if there is a deviation outside the plan of an event or a particular situation, the project is an attempt made to take opportunities so that the risk will always accompany it, therefore what needs to be considered is to optimize every opportunity that exists, in addition to taking steps to minimize the negative impact of risk on the goals and objectives to be achieved.

The FMEA method can be used to prevent various forms of failure, estimate problems and find the most optimal solutions economical. The FMEA method can identify potential failure modes in systems, subsystems, and components. This method prioritizes all potential failure modes to determine preventive measures for possible failure.

The application of the Fuzzy FMEA method is to determine the priority of repairs from various chosen alternatives to risks in KRI improvement projects so that it is expected that the application of this method can improve Fasharkan operational performance in carrying out KRI maintenance and repairs.

MATERIALS/METHODOLOGY.

2.1 Failure Mode Effect Analysis (FMEA).

Failure Modes and Effect Analysis (FMEA) is a structured procedure for identifying and preventing as many modes of failure as possible. FMEA has some risks related to potential failure and provides a good basis for characteristic classification (Pyzdek, 2002). FMEA is a good help analysis maker in identifying potential failure modes, their causes, and effects. In addition, FMEA assists in making priorities and corrective actions for the failure mode.

The aim of FMEA is to help the analysis to identify and prevent problems that have been identified before the problem occurred.

The that purpose, each risk mode failures will be evaluated and prioritized so that corrective action be taken on different failure modes.

Severity is an assessment of the seriousness of the effects caused. In the sense that each failure that arises will be assessed how much the level of seriousness. There is a direct relationship between the effects and severity. For example, if the effect is a critical effect, then the value of severity will be high. Occurrence is the possibility of a cause that will occur and produce a form of failure during the use of the product.

Occurrence is a rating value that is adjusted to the estimated frequency and or the cumulative number of failures that can occur. Value detection is associated with current

control. Detection is a measurement of the ability to control control failures that can occur. The value of Risk Priority Number (RPN) is a product resulting from the multiplication of severity, incidence, and detection rate. RPN determines the priority of failure. RPN has no value or meaning. This value is used to rank potential process failures.

The value of the RPN can be indicated by the equation as follows:

RPN = (Severity) x (Occurrence) x (Detection)

2.2 Fuzzy Theory.

2.2.1 Crisp Set (Middle).

According to Yan et al. (1994), the set of crisp A is defined by the elements that exist in that set. If a ϵ A, then A is 1. However, if a ϵ A, then a is 0. Notation A = $\{x \mid P(x)\}$ indicates that A contains x element with the P property are being true. If X_A is a characteristic function A with the character P, it can be said that P(x) is true if and only if $X_A(x) = 1$

2.2.2 Fuzzy Sets.

According to Yan et al. (1994), fuzzy sets are based on the idea of extending the range of functions characteristics of the crisp set such that the function will include real numbers at intervals [0,1]. The value of membership indicates that an element in the universe of powersation is not only at zero (0) and one (1), but also the value located between them. The truth value of a statement is not only true or false. The value of one (1) indicates true and the value of zero (0) indicates false, but there are still values that lie between true one (1) and false zero (0).

The fuzzy set has two (2) attributes, there are Linguistics and Numeric. Linguistics

is the naming of a group that represents a certain condition by using natural language such as high, low, good, big, small. Numeric is a value or number that shows the size of a variable, such as 40, 120 and 325 (Kusumadewi and Purnomo, 2004).

Some things to know in understanding fuzzy systems (Kusumadewi and Purnomo, 2004), are:

a. azzy variable

Fuzzy variables are variables which will be discussed in a fuzzy system.

b. Fuzzy set

A fuzzy set is a group that represents a certain condition in a fuzzy variable.

c. The Conversation of Universe

The conversation of the universe is the whole value that is allowed to be operated in a fuzzy variable. This is a set of real numbers which always increases monotonously from left to right. The universal value of the conversation can be either positive numbers or negative. Sometimes the universe value of this conversation is limited by its upper limit.

d. Domain

The domain of fuzzy set is the entire allowable value in the universe of conversation and may be operated in a fuzzy set. As the universe of conversation, domains are sets of real numbers which always increase monotonously from left to right. Domain values can be either positive or negative numbers.

e. Fuzzification

Fuzzification is a process to convert an input variable from a crisp form into a linguistic variable in the form of fuzzy sets with their respective membership functions.

2.2.3 Fuzzy Membership Functions.

The membership function is a curve that shows the mapping of data input points into membership degrees that have intervals between zero (0) to one (1) (Kusumadewi and Purnomo, 2004). To get a fuzzy membership value, the functional approach is used. There are several membership functions that can be used, such as the S-function, the Gauss function, the p-function, the beta function, the triangle membership function, and the trapezoir membership function.

A fuzzy membership function is said to be a triangle membership function if it has three parameters, there are p, q, r \in R with p <q <r, and stated by the following rules:

$$\mu(x,p,q,r) = \begin{cases} \frac{x-p}{q-p} & p \le x \le q \quad (2.1) \\ \frac{r-x}{r-q} & q \le x \le r \\ 0 & x \le p \text{ atau } x \ge r \end{cases}$$
Derajat

Keanggotaan

$$\mu(x)$$

Fig. 1 Triangle Membership function curve (Source: Susilo, 2003).

A fuzzy membership function is called a trapezoidal as membership function if it has four parameters, there are p, q, r, s \in R with p <q <r <s, expressed by the following rules:

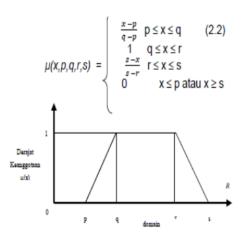


Fig. 2 Trapezoid membership function curve.

2.3 FMEA based fuzzy.

Some experts argue that the S, O and D factors are not easily evaluated accurately. Evaluation efforts have done linguistically Wang et al, 2009). The following table shows the linguistic and fuzzy terms number used to evaluate these factors and visualize the membership function of each of these factors.

Table 1. Fuzzy ratings for severity

2 Rating	Severity of Effect	Fuzzy number
Hazardous without warning (HWOW)	Level of brightness is very high when the failure model potential aff 2t the system safety without warning	(9, 10, 10)
Hazardous with a warning (HWW)	Level of brightness is very high when the failure model potential affect the system safety with warning	(8, 9, 10)
Very high (VH)	The system cannot operate with failure cause damage without endangering the safety	(2 (7 , 8, 9)

High (H)	The system cannot operate with equipment damage	(6, 7, 8)
Moderate (M)	The system cannot operate with minor damage	(5, 6, 7)
Low (L)	The system cannot operate without failure	(4, 5, 6)
Very Low (VL)	The system can operate with experience having a significant decline	(3, 4, 5)
Minor (MR)	The system can operate with experience having some decline	(2, 3, 4)
Very Minor (VMR)	The system can operate with a bit of a nuisance	(1, 2, 3)
None (N)	There is no influence	(1, 1, 2)

Source: (Wang et al, 2009)

Table 2. Fuzzy ratings for the occurrence

Rating	Probability of occurrence	Fuzzy Number
Very High (VH)	Failure can't be avoided	(8, 9, 10)
High (H)	The failure happens repeatedly	(6, 7, 8)
Moderate (M)	Failure sometimes times happened	(4, 5, 6)
Low (L)	A little Relative failure	(2, 3, 4)
Remote (R)	Failure might not happen	(1, 1, 2)

Source: (Wang et al, 2009)

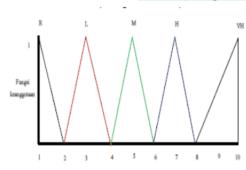


Fig. 3 Courrence and membership function Fuzzy Values (Source: Wang et al, 2009)

T	able 3.	Fuzzy	ratings	for	detection
---	---------	-------	---------	-----	-----------

	Buch shilling Data stiers Bu	F
Rating	Probability Detection By controlling device	Fuzzy Number
Absolute	There is no controller that	l
Uncertainty	can detect the cause of failure and the next failure	(9,10, 10)
(AU)	mode.	10,
Very	The controlling device has	
remote	an extremely narrow ability	(8, 9,
(VR)	in detecting failure causes and another failure phase	10)
Remote (R)	The controlling device has the narrow ability in detecting failure causes and another failure phase	(7, 8, 9)
Very Low	The controlling device has	
(VL)	an extremely narrow ability in detecting failure causes and another failure phase	(6, 7, 8)
Low (L)	The controlling device has the narrow ability in detecting failure causes and another failure phase	(5, 6, 7)
Moderate (M)	Failure and another failure phase.	(4, 5, 6)
Moderately	The ability of the device is	
High (MH)	on an average level on the controller detects the cause glailure and the next failure mode.	(3, 4, 5)
High (H)	The high ability of the controller det 9 s the cause of failure and failure mode.	(2, 3, 4)
Very High (VH)	Very high ability of the controller to detect the cause failure and failure mode	(1, 2, 3)
Almost Certain (AC)	Almost certainly the ability of the controller detects the cause of failure and failure mode.	(1, 1, 2)

(Source: Wang et al, 2009)

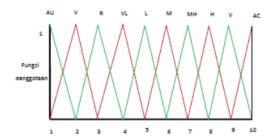


Fig. 4 Detection and membership function Fuzzy Values (Source: Wang et al, 2009)

Traditional FMEA does not consider the relative importance of risk factors and places them at the same level of importance. The weight of the relative importance of the interests by using linguistic terms that can be seen in table 2.4 and its contribution function can be seen in Figure 2.4.

Table 4. Fuzzy weight for the relative importance

Linguistic Form	Fuzzy Number		
Very Low (VL)	(0;0;0,25)		
Low (L)	(0; 0,25; 0,5)		
Medium (M)	(0,25; 0,5; 0,75)		
High (H)	(0,5;0,75;1)		
Very High (VH)	(0.75;1;1)		

Source: (Wang et al, 2009)

Based on (Wang et al., 2009) to evaluate the failure factors in FMEA in fuzzy form, steps can be taken as follows:

1. Collect the subjective opinions of members of the FMEA assessment team using the following equation:

$$\begin{split} & \tilde{R}_{i}^{o} = \frac{1}{n} \sum_{j=1}^{m} hj \cdot \tilde{R}_{ij}^{o} = (\sum_{j=1}^{m} hj \cdot \tilde{R}_{ijk}^{o}) \sum_{j=1}^{m} hj \cdot \tilde{R}_{ijkl}^{o}) \\ & \sum_{j=1}^{m} hj \cdot \tilde{R}_{ijkl}^{o}) \\ & \tilde{R}_{i}^{e} = \frac{1}{n} \sum_{j=1}^{m} hj \cdot \tilde{R}_{ij}^{e} = (\sum_{j=1}^{m} hj \cdot \tilde{R}_{ijkl}^{e}, \sum_{j=1}^{m} hj$$

Calculates fuzzy risk priority number
 (FRPN) for each failure model with the following equation:

Traditional The Adefines RPN as a simple result from Occurrence (O), Severity (S), and Detection (D) without considering the weight of its relative importance. But at Fuzzy FMEA weights, the relative importance of risk factors are assessed using linguistic terms.

3. RESEARCH METHODS

This study examines the application of the Fuzzy FMEA method to the improvement of KRI Operational Radar Navigation Sperry Marine Warships of the Republic of Indonesia.

Application of the Model.

The model implementation will be tested on the Radar Sperry Marine operational process, where there 35 failure modes in the operational process which can be seen in the following table 4.1:

Table 5. Damage Mode

No	Dimension	Failures Modes
1	D1 - Force Majeure	D1.1: Fire
		D1.2: Flood
		D1.3: Earthquake
		D1.4: Storm
2	D2 - management	D2.1: Inaccurate from plan design
		D2.2: Supervisor
		D2.3 : accuracy for personel selection
		D2.4: coordination implementation
3	D3 – engineering and Implements	D3.1: Time accuracy and
		D3.2: accuracy in material execution
		D3.3: experts availability
		D3.4: Availability of field workers
		D3.5: Damage from tools
		D3.6: Variation in work Productivity
		D3.7: Technology expert in repairing process
		D3.8: Work accidents
		D3.9: Quality of work results
4	D4 - Contract and law	D4.1: The article is less complete
7		D4.2: The article is unclear
		D4.3: Different interpretation
		D4.4: Payment setting
		D4.5: Security problems

5. RESULTS AND DISCUSSION.

5.1 Comparative Results of RPN, FRPN.

Table 6. Comparison of results of RPN, FRPN, and RPI

No	RPN	FMEA Failures Modes	FRPN	Fuzzy FMEA Failures Modes
1	196	D1.1: Fire	5,358	D1.1: Fire
2	108	D1.2: Flood	4,531	D1.2: Flood
3	40	D1.3: Earthquake	3,722	D1.3: Earthquake
4	63	D1.4: Storm	3,981	D1.4: Storm
5	216	D2.1: Inaccurate from plan design	6,161	D2.1: Inaccurate from plan design
6	100	D2.2: Supervisor	6,008	D2.2: Supervisor
7	80	D2.3: selection	5,466	D2.3: selection
8	216	D2.4: coordination implementation	5,768	D2.4: coordination implementation
9	441	D3.1: Time accuracy and job desk	7,501	D3.1: Time accuracy and job desk
10	512	D3.2: accuracy in material execution	8,501	D3.2: accuracy in material execution
11	294	D3.3: experts availability	7,194	D3.3: experts availability
12	180	D3.4: Availability of field workers	6,453	D3.4: Availability of field workers
13	729	D3.5: Damage from tools	8,914	D3.5: Damage from tools
14	245	D3.6: Variation in work Productivity	6,529	D3.6: Variation in work Productivity
15	216	D3.7: Technology expert in repairing process	6,332	D3.7: Technology expert in repairing process
16	175	D3.8: Work accidents	6,275	D3.8: Work accidents
17	120	D3.9: Quality of work results	5,847	D3.9: Quality of work results
18	90	D4.1: The article is less complete	4,635	D4.1: The article is less complete
19	80	D4.2: The article is unclear	4,667	D4.2: The article is unclear
20	36	D4.3: Different interpretation	4,002	D4.3: Different interpretation
21	50	D4.4: Payment setting	3,243	D4.4: Payment setting

5.2 RPN, FRPN and RPI Analysis.

5.2.1 Analysis of FMEA and FUZZY FMEA .

In Table 5.1 above we can see that from 22 failure KRI repair models in Fasharkan Lantamal V Surabaya risk failure groups have the same RPN and ranking values.

From the table above, it can be seen that there are several components that have the same RPN value. This is because, in FMEA traditional factors of severity (S), assurance (O) and detection (D) are considered to have the same level of importance; in fact they have different levels of importance. Likewise, the weight of the

interests of the FMEA assessment team is not taken into account.

By using a fuzzy approach to FMEA, where each failure has different fuzzy rating values and the level of importance and weight of the FMEA assessment team is considered, then after calculating the FRPN value each component has a different ranking. By using a fuzzy approach to FMEA, it will be more easy for users to distinguish risk in failure mode which has the same RPN value.

5.2.2 Analysis of FMEA, FUZZY FMEA

After analyzing the KRI repair project in Fasharkan Navy Main Base, Surabaya, table 5.1 gives the results of conventional FMEA and fuzzy theory approaches, using the FMEA method makes it difficult for principals to determine the priority order of the failure modes that occur.

From table 5.1 it can also be seen that from the twenty-two failure modes of the KRI repair project in Lantana V Surabaya there is no same FRPN value for each identified failure mode so that each failure has its one priority rating, this is due to the assessment of severity (S), occurrence and detection (D) factors taking into account the weight of the interests of FMEA assessment team members and the weight of each factor (S, O, and D) in each failure mode that occurs.

D2.4 failure mode coordination implementation, D3.7 mastery of technology in the process of improvement and D2.1 inaccurate planning has the same RPN value that is equal to 216, with the model approach developed, failure modes D2.4, D3.7 and D2. 1 has a different fuzzy rating for each failure

mode which is 5.768; 6.332 and 6.161, by using fuzzy on FMEA it is easier for users to distinguish risk representations in failure mode which has the same RPN value, failure modes D2.4, D3.7 and D2.1 have the same RPN but all three have risks that different, using the proposed method failure modes D2.4, D3.7 and D2.1 have different risk levels and ranking of the three with the proposed approaches, they are 7,9 and 12. Ranking obtained by the FMEA method can result in errors especially if the data used for analysis is accompanied by a high degree of uncertainty.

6. CONCLUSION.

From the results of data collection and processing, and analysis and interpretation of the results of data processing that has been done, the conclusions that can be taken in this study are:

- a. A significant risk factor in the KRI repair project in Fasharkan, the Main Navy Base of Surabaya V is
 - Work equipment damage with a value of 8.914
 - 2) The accuracy of material procurement with a value of 8.501
 - 3) Timeliness of work with a value: 7,501
- b. Handling the risk response to risks that are likely to occur and have a significant impact on the KRI repair project in Surabaya's Fasharkan Main Base V Surabaya is expected to minimize the risks that occur or may be able to eliminate the risk response risk as follows:
 - Working equipment damage is by controlling periodic service on existing equipment, controls the calibration of the equipment that has been used validation and buying new equipment and maintenance regularly to reduce expenditure costs.

- The accuracy of material procurement is by using previous historical data to estimate work
- 3) Timeliness of work is by using time management of project implementation must be done by staff officers with the selection of the right method because it becomes a bond in the contract with a fine who force and carry out overtime work.

Suggestions

- a. In this study, it is better to do hypotheses for more and more mastering respondents who have experience in handling risks that occur in KRI repair projects in Surabaya's Fasharkan Main Base V Surabaya so the results this research can be used as a reference in implementing projects using risk management in subsequent projects.
- b. For the next researchers who are interested in a similar type of research, it is better to develop it by combining with other methods to analyze more complex problems.

BIBLIOGRAPHY.

Afnor. (2003) Norma FD X 50-117 Management des Risques Project, (Avril, ISSN: 0335–3931).

Anish Sachdeva, *Dinesh Kumar*, and *Pradeep Kumar*. (2009) 'Multi factor failure model critically analysis using TOPSIS', 18 Journal of Industrial Engineering International Islamic Azad University, South Tehran: Branch January 2009, Vol. 5, No. 8, 1-9.

Aprilia Anastasia. (2006) Analisa Faktor – Faktor Risiko pada Inbound Supply dan Relasinya Terhadap Kinerja Operasional Perusahaan Yang Relevan, Tugas Akhir, Surabaya: Teknik Industri FTI ITS. Chapman, C.B, Ward, S. (2007) Project Risk Management: Processes Techniques and Insight. Scholl of Management, University of Southampton UK 0-470-85355-7.

Conroy, G. Soltan H. (1998) 'A project Specific Risk Management Concept', International Journal of Project Management, 16 (6), 353-366.

Diana, Puspita Sari. (2011) 'Analisa Penyebab Kegagalan Produk Woven 25 Bag Dengan Menggunakan Metode FMEA', Prosiding Seminar Nasional Sains dan Teknologi ke-2 Tahun 2011 Fakultas Teknik Universitas Wahid Hasyim Semarang.

Grant, K.P, Cashman, W.M, Christensen, D.S. (2006) 'Delivering Project on Time', Research and Technology Management, 52-58.

Kusumadewi, S., Purnomo. (2004) *Aplikasi Logika* Fuzzy untuk pendukung Keputusan, Yogyakarta: Graha Ilmu.

K. Shahroudi, H. Rouydel. (2012) 'Using a multi-criteria decision making approach (ANP-TOPSIS) to evaluate suppliers in Iran's auto industry', International Journal of Applied Operational Research Vol. 2, No. 2, pp. 37-48, July 2012.

Nuri Guntur Perdana, Tri Widodo. (2013) 'Sistem Pendukung Keputusan Pemberian Beasiswa Kepada Peserta Didik Baru Menggunakan Metode TOPSIS". Seminar Nasional Teknologi Informsi & Komunikasi Terapan', Semarang: 16 November 2013.

6
Pillay, A., and Wang, J. (2003) 'Modified Failure

Mode and Effects Analysis Using Approximate

Reasoning', Reliability Engineering & System Safety 139,379 -394.

Pyzdek. (2002) *The Six Sigma Handbook*, Jakarta: PT.Salemba Patria.

Rakesh. R, Bobin Cherian Jos, George Mathew. (2013) 'FMEA Analysis for Reducing Breakdowns of a Sub System in the Life Care Product Manufacturing Industry', International Journal of Engineering Science and Innovative Technology (IJESIT), Volume 2, Issue 2, March 2013.

Ravendra Singh, Hemant Bajput, Vedansh Chaturvedi, Jyoti Vimal. (2012) 'Supplier Selection By Technique Of Order Preference By Similariry To Ideal Solution (TOPSIS) Method for Automotive Industry', International Journal Of Advanced Technology & Engineering Research (IJATER), Volume 2, Issue 2, March 2012.

Restu Prabandini. (2005) *Analisa Risiko Pada Proses Distribusi Dan Transportasi*, Teknik Industri FTI ITS.

Sachdeva, A., Kumar, D., P. (2009) 'Multi Factor Mode Critically Analysis Using TOPSIS', International Journal of Industrial Engineering, Vol. 5, No. 8 pp 1-9.

Shiyu Mu, Hu Cheng, Mohamed Chohr, Wei peng. (2014) 'Assessing risk management capability of contractors in subway projects in mainland China', International Journal Of Project Management 32.452-460.

36 Susilo, F. (2003) *Pengantar Himpunan & Logika Kabur serta Aplikasinya*, Yogyakarta: Graha Ilmu. Syarifuddin M Parenreng. (2006) *Mengelola Risiko Dalam Supply Chain Management : Studi kasus pada PT. INCO Tbk, Soroako*, Tesis Teknik Industri FTI ITS.

Ved Parkash, Deepak Kanar, Chandan Kumar, Rakesh Rajoria. (2013), 'Failure Mode and Effect Analysis of Automotive Charging syste', International Journal of Software and Hardware Research Engineering, Volume 1, Issue 3, Nopember 2013.

Yonas Mitiku Degu dan R. Srinivasa Moorthy. (2014), 'Implementation of Machinery Failure Mode and Effect Analysis in Amhara Pipe Factory D.L.C.', American Journal of Engineering Research (AJER) e-ISSN: 2320-0847 p-ISSN: 2320-0936, Volume-03, Issue-01, pp-57-63.

Wang, Y.M., Chin, K. S., Poon, G. K. K., & Yang, J.B. (2013), 'FMEA Analysis for Reducing Breakdowns of a Sub System in the Life Care Product Manufacturing Industry', International Journal of Engineering Science and Innovative Technology (IJESIT), Volume 2, Issue 2, March 2013.

Zhi-Ping Fan, Yong-Hai Li, yao Zhang. (2015) Generating project risk response strategies based on CBR: A case study, Expert system with Applications 42. 2870-2883.

An Analysis On Kri Improvement Project In Indonesian Naval

ORIGINALITY REPORT

25%

SIMILARITY INDEX

PRIMARY SOURCES

- Khawarita Siregar, Ukurta Tarigan, Richard Spencer. "Analysis of Obstacles in The Unloading Process with Failure Mode and Effect Analysis (FMEA) in PT. XYZ", IOP Conference Series: Materials Science and Engineering, 2020 $_{\text{Crossref}}$
- Wang, Y.M.. "Risk evaluation in failure mode and effects analysis using fuzzy weighted geometric mean", 84 words 2% Expert Systems With Applications, 200903
- Samitha Khaiyum, Y. S. Kumaraswamy. "Pattern of transformation of failures based on severity in real-time embedded software projects", 2014 International Conference on Electronics and Communication Systems (ICECS), 2014
- Dyah Lintang Trenggonowati, Maria Ulfah, Faula Arina, 66 words 1 % Chisti Lutfiah. "Analysis and strategy of supply chain risk mitigation using fuzzy failure mode and effect analysis (fuzzy fmea) and fuzzy analytical hierarchy process (fuzzy ahp)", IOP Conference Series: Materials Science and Engineering, 2020
- Shen, Gui-xiang, Shao-hua Fan, Ying-zhi Zhang, Ling-hui Wei, and Ya-zhou Jia. "Risk evaluation of NC machine tools based on fuzzy weighted geometric mean", 2010 IEEE International Conference on Industrial Engineering and Engineering Management, 2010.
- G. Sakthivel, D. Saravanakumar, T. Muthuramalingam. 56 words 1% "Application of failure mode and effect analysis in

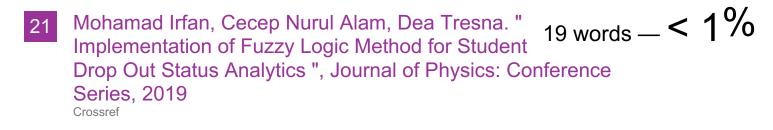
manufacturing industry - an integrated approach with FAHP-fuzzy
TOPSIS and FAHP-fuzzy VIKOR", International Journal of
Productivity and Quality Management, 2018

Crossref

- Tony Yulianto, Rica Amalia, Kuzairi. "Application of FKNN on Positioning of Potential Salt in Coastal South Beach of Madura", Journal of Physics: Conference Series, 2018
- S Buwarda, K H Rasyid, Muhlis, M Hidayat. "Fuzzy Logic Method as Determining of Internet Network VSAT 42 words 1% performance in Black Spot Region at District of Enrekang", IOP Conference Series: Materials Science and Engineering, 2020
- Sebnem Helvacioglu, Emre Ozen. "Fuzzy based failure modes and effect analysis for yacht system design",

 Ocean Engineering, 2014
- Yulia Retno Sari, Lidya Rizki Ananda, Maha Rani. "The Analysis of Fuzzy Logic Method and Multiple Linear Regression in Determining National Rice Production to Improve Food Self-Sufficiency in Indonesia", IOP Conference Series:

 Materials Science and Engineering, 2020
- Sara Marcelino-Sádaba, Amaya Pérez-Ezcurdia, Angel M. Echeverría Lazcano, Pedro Villanueva. "Project risk management methodology for small firms", International Journal of Project Management, 2014
- FMEA Using Uncertainty Theories and MCDM
 Methods, 2016.


 Crossref

 29 words 1%
- M B Zaman, A Santoso, Hasanuddin, W Busse. "Risk Evaluation of Ferry in the Bali Straits using FMEA Method", IOP Conference Series: Earth and Environmental Science, 2020

Crossref

S. Karthik Bharathi, S. Vinodh, N. Gopi.
"Development of software support for process
FMEA: a case study", International Journal of Services and
Operations Management, 2018
Crossref

- Douglas Omoregie Aghimien, Clinton Aigbavboa,
 David J. Edwards, Abdul-Majeed Mahamadu et al.

 "A fuzzy synthetic evaluation of the challenges of smart city development in developing countries", Smart and Sustainable Built Environment, 2020

 Crossref
- Donny Fernando, Nurfitri Handayani. "Uji Sensitivitas Metode Sistem Pendukung Keputusan Dalam Menentukan Lokasi Penyebaran Media Promosi", JSil (Jurnal Sistem Informasi), 2018
- Puzakov Andrey Vladimirovich. "Using parameters of the external magnetic field for diagnosing faults in automotive alternator", 2019 International Conference on Electrotechnical Complexes and Systems (ICOECS), 2019

 Crossref
- Marwan Tangahu, Hari Purnomo, Agus Mansur.
 "Desain Sistem Kerja Mesin Pemipih Jagung yang
 Ergonomi untuk Meningkatkan Produktivitas", PROZIMA
 (Productivity, Optimization and Manufacturing System
 Engineering), 2018
 Crossref
- Ammar Ahmed, Berman Kayis, Sataporn
 Amornsawadwatana. "A review of techniques for risk management in projects", Benchmarking: An International Journal, 2007
 Crossref
- Rohmah, Devi Urianty Miftahul, Wike Agustin Prima
 Dania, and Ika Atsari Dewi. "Risk Measurement of
 Supply Chain Organic Rice Product Using Fuzzy
 Failure Mode Effect Analysis in MUTOS Seloliman

 16 words < 1%

Trawas Mojokerto", Agriculture and Agricultural Science Procedia, 2015.

Crossref

- Chin, K.-S.. "Failure mode and effects analysis using a group-based evidential reasoning approach", Computers and Operations Research, 200906
- Vladěna Obrová, Lenka Smolíková. "Chapter 48
 The Comparison of Selected Risk Management
 Methods for Project Management", Springer Science and Business
 Media LLC, 2013
 Crossref
- Vishal Choudhary, Dr. S. Taruna, Lal Babu Purbey.

 "A Comparative Analysis of Cryptographic Keys and Security", 2018 3rd International Conference and Workshops on Recent Advances and Innovations in Engineering (ICRAIE), 2018

 Crossref
- Rahmat Fadhil, Raida Agustina. "A multi-criteria sensory assessment of Cucumis melo (L.) using fuzzy-Eckenrode and fuzzy-TOPSIS methods", Foods and Raw Materials, 2019
- Rosa Andrie Asmara, Moch. Zawaruddin Abdullah, 14 words < 1% Fanina Meidina Wahyuningtyas. "Herbalife Nutrition Product Recommender System using Mamdani Fuzzy Logic", 2020 4th International Conference on Vocational Education and Training (ICOVET), 2020
- Luping Gan, Yu Pang, Qiang Liao, Ning-Cong Xiao, 13 words < 1% Hong-Zhong Huang. "Fuzzy criticality assessment of FMECA for the SADA based on modified FWGM algorithm & Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, 2011

Effectiveness Pada Mesin Power Press
Combination Forming 60T", Jurnal Sistem dan
Manajemen Industri, 2017
Crossref

- Ikuobase Emovon, Rosemary Norman. "Risk analysis of engineering systems for sustainable industrial development using the Taguchi approach", Journal of Quality in Maintenance Engineering, 2019
- Arif, Muhammad Fadli, Bima Anoraga, Samingun 9 words < 1% Handoyo, and Harisaweni Nasir. "Algorithm Apriori Association Rule in Determination of Fuzzy Rule Based on Comparison of Fuzzy Inference System (FIS) Mamdani Method and Sugeno Method", Business Management and Strategy, 2016.
- Hu-Chen Liu, Xu-Qi Chen, Chun-Yan Duan, Ying-Ming Wang. "Failure mode and effect analysis using multi-criteria decision making methods: A systematic literature review", Computers & Industrial Engineering, 2019

 Crossref
- Jakkula Balaraju, Mandela Govinda Raj, Chivukula Suryanarayana Murthy. "Fuzzy-FMEA risk evaluation 9 words < 1% approach for LHD machine-A case study", Journal of Sustainable Mining, 2019

 Crossref
- Sohag Kabir, Yiannis Papadopoulos. "A review of applications of fuzzy sets to safety and reliability engineering", International Journal of Approximate Reasoning, 2018

 Crossref
- Liu, H.C.. "Failure mode and effects analysis using fuzzy evidential reasoning approach and grey theory", Expert Systems With Applications, 201104
- Rong Hua, Huanyu Zhao. "Chapter 32 Optimization and Simulation of Fuzzy Control Based on SOA", 8 words < 1%

Springer Science and Business Media LLC, 2020

Crossref

- G. Sakthivel, Bernard W. Ikua. "A novel approach for 8 words < 1% failure mode and effect analysis in propeller shaft manufacturing industry using fuzzy analytic hierarchy process and GRA VIKOR", International Journal of Productivity and Quality Management, 2019
- S Indrawati, A 'Azzam, H I Cahaya. "Supplier 7 words < 1% Healthcare Service Industry", IOP Conference Series: Materials Science and Engineering, 2019
- Shiyu Mu, Hu Cheng, Mohamed Chohr, Wei Peng.

 "Assessing risk management capability of contractors 6 words < 1% in subway projects in mainland China", International Journal of Project Management, 2014

 Crossref
- "Advances in Computational Intelligence", Springer Science and Business Media LLC, 2012
- Dilbagh Panchal, Anupam K. Singh, Prasenjit
 Chatterjee, Edmundas Kazimieras Zavadskas, Mehdi
 Keshavarz-Ghorabaee. "A new fuzzy methodology-based
 structured framework for RAM and risk analysis", Applied Soft
 Computing, 2019
 Crossref
- Lan Zhang. "Learning fuzzy concept prototypes using 6 words < 1% genetic algorithms", FUZZ-IEEE 99 1999 IEEE International Fuzzy Systems Conference Proceedings (Cat No 99CH36315), 1999

 Crossref

EXCLUDE QUOTES OFF EXCLUDE MATCHES OFF